Counting with rational generating functions

نویسندگان

  • Sven Verdoolaege
  • Kevin M. Woods
چکیده

We examine two different ways of encoding a counting function, as a rational generating function and explicitly as a function (defined piecewise using the greatest integer function). We prove that, if the degree and number of input variables of the (quasi-polynomial) function are fixed, there is a polynomial time algorithm which converts between the two representations. Examples of such counting functions include Ehrhart quasi-polynomials, vector partition functions, integer points in parametric polytopes, and projections of the integer points in parametric polytopes. For this last example, this algorithm provides the first known way to compute the explicit function in polynomial time. We rely heavily on results of Barvinok and Pommersheim (1999, Math. Sci. Res. Inst. Publ., 38), and also of Verdoolaege, Seghir, Beyls, et al. (2007, Algorithmica, 48, 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Symmetry to Count Rational Curves

The recent “close encounter” between enumerative algebraic geometry and theoretical physics has resulted in many new applications and new techniques for counting algebraic curves on a complex projective manifold. For example, string theorists demonstrated that generating functions built from counting curves can have completely unexpected relationships with other geometric constructions, via mir...

متن کامل

Presburger Arithmetic, Rational Generating Functions, and Quasi-Polynomials

Presburger arithmetic is the first-order theory of the natural numbers with addition (but no multiplication). We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, if p = (p1, . . . , pn) are a subset of the free...

متن کامل

Counting with Irrational Tiles

We introduce and study the number of tilings of unit height rectangles with irrational tiles. We prove that the class of sequences of these numbers coincides with the class of diagonals of N-rational generating functions and a class of certain binomial multisums. We then give asymptotic applications and establish connections to hypergeometric functions and Catalan numbers.

متن کامل

ANALYTIC COMBINATORICS OF CHORD AND HYPERCHORD DIAGRAMS WITH k CROSSINGS

Using methods from Analytic Combinatorics, we study the families of perfect matchings, partitions, chord diagrams, and hyperchord diagrams on a disk with a prescribed number of crossings. For each family, we express the generating function of the configurations with exactly k crossings as a rational function of the generating function of crossing-free configurations. Using these expressions, we...

متن کامل

Counting permutations with no long monotone subsequence via generating trees and the kernel method

We recover Gessel’s determinantal formula for the generating function of permutations with no ascending subsequence of length m + 1. The starting point of our proof is the recursive construction of these permutations by insertion of the largest entry. This construction is of course extremely simple. The cost of this simplicity is that we need to take into account in the enumeration m − 1 additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2008